AI & Developer Productivity

Copilot Instructions & Context Files: The Before/After That Changes Everything

Copilot without context generates generic code that violates your architecture. With .github/copilot-instructions.md, it suggests code matching your patterns 80% of the time. Real before/after examples: API endpoints, domain events, and test generation. Learn to codify architecture, define anti-patterns, create validation rules, and measure impact. Implementation checklist, common mistakes, and advanced patterns included. Setup takes one afternoon, benefits compound forever.

Ruchit Suthar
Ruchit Suthar
December 9, 202511 min read
Copilot Instructions & Context Files: The Before/After That Changes Everything

TL;DR

GitHub Copilot's true power comes from teaching it your architecture through `.github/copilot-instructions.md` files. Teams using context files get 80% production-ready code that matches their patterns, while teams without them waste hours fixing architectural violations in code reviews.

Copilot Instructions & Context Files: The Before/After That Changes Everything

Your team installed GitHub Copilot. Everyone's excited. But three weeks later, Copilot is still suggesting code that violates your architecture, ignores your conventions, and breaks your carefully designed boundaries.

Meanwhile, your competitor's team is generating production-ready code that matches their patterns 80% of the time. New engineers are productive in days, not weeks. Code reviews focus on business logic, not basic architecture violations.

The difference? Two files: .github/copilot-instructions.md and .github/copilot-agents.md.

This is the setup guide with real before/after examples. By the end, you'll know exactly how to teach Copilot your system—and why it's the highest-leverage thing you can do for your team's productivity in 2026.


The Problem: Copilot Doesn't Know Your System

Here's what happens without context files:

Your team uses:

  • Hexagonal architecture
  • Domain-driven design
  • Result<T, E> for error handling (no exceptions)
  • Event sourcing for critical domains
  • Specific naming conventions

Copilot suggests:

  • Anemic domain models
  • Direct database access from controllers
  • Try-catch blocks everywhere
  • CRUD operations for everything
  • Generic variable names

Result:

  • Code reviews turn into architecture lessons
  • Junior developers learn bad patterns
  • PRs require 3-4 iterations
  • Velocity gains from Copilot: minimal

The root cause: Copilot is a smart junior developer who's never seen your codebase before. Without context, it falls back to generic patterns.

The solution: Teach it your patterns once. Everyone benefits forever.


What Are Copilot Context Files?

Think of them as architecture documentation that AI can read and apply.

.github/copilot-instructions.md

  • General guidelines for your entire codebase
  • Architecture patterns and principles
  • Coding conventions and standards
  • Anti-patterns to avoid
  • Testing philosophy

.github/copilot-agents.md (Advanced)

  • Task-specific instructions for specialized workflows
  • Multi-step processes (e.g., "add new API endpoint")
  • Team-specific agents (frontend, backend, infrastructure)
  • Context for complex scenarios

Placement:

your-repo/
├── .github/
│   ├── copilot-instructions.md    ← Start here
│   ├── copilot-agents.md          ← Advanced workflows
│   └── copilot-examples/           ← Optional: pattern library
│       ├── api-endpoint-pattern.md
│       ├── domain-event-pattern.md
│       └── error-handling-pattern.md

Before/After: Real Examples

Example 1: API Endpoint Creation

Before (Without Context):

Developer types:

// Create endpoint to update user profile

Copilot suggests:

app.post('/api/users/:id', async (req, res) => {
  try {
    const user = await db.query('UPDATE users SET name = $1 WHERE id = $2', 
      [req.body.name, req.params.id]);
    res.json({ success: true, user });
  } catch (error) {
    res.status(500).json({ error: error.message });
  }
});

Problems:

  • ❌ Direct database access in route handler
  • ❌ No validation
  • ❌ Using exceptions for control flow
  • ❌ Anemic response structure
  • ❌ No authorization check
  • ❌ SQL injection risk

Code review: Tech lead spends 15 minutes explaining hexagonal architecture, validation, error handling, and authorization. PR needs complete rewrite.


After (With Context):

.github/copilot-instructions.md:

# Architecture Guidelines

## API Endpoint Pattern
All API endpoints follow this structure:

1. **Controller Layer** (minimal, routes requests)
   - Validates input using Zod schemas
   - Calls use case from application layer
   - Maps results to HTTP responses

2. **Application Layer** (use cases)
   - Orchestrates domain logic
   - Returns Result<T, E> (never throws)

3. **Domain Layer** (business logic)
   - Pure functions and domain models
   - No infrastructure dependencies

4. **Infrastructure Layer**
   - Repository implementations
   - External service adapters

## Error Handling Convention
- Use Result<T, E> pattern for all operations
- Map domain errors to HTTP status codes in controller
- Never expose internal error details to clients

## Response Format
All API responses follow:
```json
{
  "success": boolean,
  "data": T | null,
  "error": { code: string, message: string } | null
}

Authorization

  • All endpoints require authentication check
  • Use @RequireAuth decorator
  • Check permissions at use case level

Now developer types:
```typescript
// Create endpoint to update user profile

Copilot suggests:

@RequireAuth()
@Post('/api/users/:id')
async updateProfile(
  @Param('id') userId: string,
  @Body() dto: UpdateProfileDto,
  @CurrentUser() currentUser: User
) {
  // Validate input
  const validationResult = UpdateProfileSchema.safeParse(dto);
  if (!validationResult.success) {
    return ApiResponse.validationError(validationResult.error);
  }

  // Execute use case
  const result = await this.updateProfileUseCase.execute({
    userId,
    currentUserId: currentUser.id,
    data: validationResult.data
  });

  // Map result to HTTP response
  return result.match({
    ok: (profile) => ApiResponse.success(profile),
    err: (error) => ApiResponse.fromDomainError(error)
  });
}

Result: ✅ Correct architecture (controller → use case → domain)
✅ Input validation with Zod
✅ Authorization check
✅ Result<T, E> pattern
✅ Proper error handling
✅ Consistent response format

Code review: Tech lead: "LGTM." Approved in 2 minutes.


Example 2: Domain Event Implementation

Before (Without Context):

Developer types:

// Emit event when order is placed

Copilot suggests:

const order = await Order.create(orderData);
await order.save();

eventEmitter.emit('order.placed', {
  orderId: order.id,
  userId: order.userId,
  timestamp: new Date()
});

Problems:

  • ❌ Event emitted outside transaction
  • ❌ Missing domain event structure
  • ❌ No event versioning
  • ❌ Tight coupling to event emitter

Code review: Architect explains event sourcing, transaction boundaries, and domain events. PR rejected.


After (With Context):

.github/copilot-instructions.md:

## Event Sourcing Pattern

We use event sourcing for Order and Payment aggregates.

### Domain Event Structure
All events must:
- Extend DomainEvent base class
- Include eventType, aggregateId, version, timestamp
- Be immutable
- Contain all data needed to rebuild state

### Event Emission
- Events are recorded in aggregate root
- Events are committed after successful save
- Use EventStore.save(aggregate) which handles:
  - Persistence
  - Event publishing
  - Optimistic locking

### Example:
```typescript
class Order extends AggregateRoot {
  place(items: OrderItem[]): Result<void, DomainError> {
    // Validate
    const validation = this.validateItems(items);
    if (validation.isErr()) return validation;

    // Record event (not emitted yet)
    this.recordEvent(new OrderPlacedEvent({
      aggregateId: this.id,
      items,
      totalAmount: this.calculateTotal(items),
      userId: this.userId,
      version: this.version + 1
    }));

    // Update state
    this.items = items;
    this.status = OrderStatus.Placed;

    return ok(undefined);
  }
}

// In use case:
const result = order.place(items);
if (result.isOk()) {
  await this.eventStore.save(order); // Events published here
}

Now Copilot suggests:
```typescript
// In Order aggregate
place(items: OrderItem[]): Result<void, DomainError> {
  // Validate order can be placed
  if (this.status !== OrderStatus.Draft) {
    return err(new InvalidOrderStateError('Cannot place non-draft order'));
  }

  if (items.length === 0) {
    return err(new EmptyOrderError('Order must have at least one item'));
  }

  // Calculate totals
  const totalAmount = this.calculateTotal(items);

  // Record domain event
  this.recordEvent(new OrderPlacedEvent({
    aggregateId: this.id,
    items: items.map(item => item.toSnapshot()),
    totalAmount,
    userId: this.userId,
    placedAt: new Date(),
    version: this.version + 1
  }));

  // Update aggregate state
  this.items = items;
  this.status = OrderStatus.Placed;
  this.placedAt = new Date();

  return ok(undefined);
}

// In use case
async execute(command: PlaceOrderCommand): Promise<Result<Order, DomainError>> {
  // Load aggregate
  const orderResult = await this.orderRepository.findById(command.orderId);
  if (orderResult.isErr()) return orderResult;

  const order = orderResult.value;

  // Execute domain logic
  const placeResult = order.place(command.items);
  if (placeResult.isErr()) return placeResult;

  // Persist (events published in transaction)
  const saveResult = await this.eventStore.save(order);
  return saveResult.map(() => order);
}

Result: ✅ Events recorded in aggregate
✅ Transaction boundary respected
✅ Proper event structure
✅ State updated correctly
✅ Error handling with Result<T, E>

Code review: Architect: "Perfect. This is exactly our event sourcing pattern." Approved.


Example 3: Test Generation

Before (Without Context):

Developer asks: "Generate tests for UserService"

Copilot generates:

describe('UserService', () => {
  it('should create user', async () => {
    const result = await service.createUser({ name: 'Test' });
    expect(result).toBeDefined();
  });

  it('should throw error for invalid input', async () => {
    await expect(service.createUser(null)).rejects.toThrow();
  });
});

Problems:

  • ❌ Tests don't follow team's structure
  • ❌ No Given-When-Then format
  • ❌ Uses exceptions (we use Result<T, E>)
  • ❌ Missing setup and teardown
  • ❌ No edge case coverage

After (With Context):

.github/copilot-instructions.md:

## Testing Philosophy

### Unit Tests
- Use Given-When-Then structure
- Test domain logic in isolation
- Mock infrastructure dependencies
- Aim for 80%+ coverage on business logic

### Test Structure
```typescript
describe('FeatureName', () => {
  describe('happy path', () => {
    it('should [expected behavior] when [condition]', () => {
      // Given (setup)
      // When (execute)
      // Then (assert)
    });
  });

  describe('error cases', () => {
    it('should return [error] when [invalid condition]', () => {
      // Given
      // When
      // Then - assert error is returned (not thrown)
    });
  });
});

Assertion Style

  • Use Result<T, E> assertions: expect(result.isOk()).toBe(true)
  • Never use .rejects.toThrow() - we don't throw from business logic
  • Test both success and error paths

Test Data

  • Use factory functions from test/factories
  • Create realistic but minimal test data

Now Copilot generates:
```typescript
describe('UserService', () => {
  let service: UserService;
  let mockRepository: jest.Mocked<UserRepository>;
  let mockEventBus: jest.Mocked<EventBus>;

  beforeEach(() => {
    mockRepository = createMockRepository();
    mockEventBus = createMockEventBus();
    service = new UserService(mockRepository, mockEventBus);
  });

  describe('createUser', () => {
    describe('happy path', () => {
      it('should create user with valid data when all validations pass', async () => {
        // Given
        const command = UserFactory.createCommand({
          email: 'test@example.com',
          name: 'Test User'
        });
        mockRepository.findByEmail.mockResolvedValue(ok(null));
        mockRepository.save.mockResolvedValue(ok(undefined));

        // When
        const result = await service.createUser(command);

        // Then
        expect(result.isOk()).toBe(true);
        expect(result.value).toMatchObject({
          email: command.email,
          name: command.name
        });
        expect(mockRepository.save).toHaveBeenCalledTimes(1);
        expect(mockEventBus.publish).toHaveBeenCalledWith(
          expect.objectContaining({ type: 'UserCreated' })
        );
      });
    });

    describe('error cases', () => {
      it('should return ValidationError when email is invalid', async () => {
        // Given
        const command = UserFactory.createCommand({
          email: 'invalid-email',
          name: 'Test User'
        });

        // When
        const result = await service.createUser(command);

        // Then
        expect(result.isErr()).toBe(true);
        expect(result.error).toBeInstanceOf(ValidationError);
        expect(result.error.message).toContain('Invalid email format');
        expect(mockRepository.save).not.toHaveBeenCalled();
      });

      it('should return DuplicateUserError when email already exists', async () => {
        // Given
        const existingUser = UserFactory.create({ email: 'test@example.com' });
        const command = UserFactory.createCommand({ email: 'test@example.com' });
        mockRepository.findByEmail.mockResolvedValue(ok(existingUser));

        // When
        const result = await service.createUser(command);

        // Then
        expect(result.isErr()).toBe(true);
        expect(result.error).toBeInstanceOf(DuplicateUserError);
        expect(mockRepository.save).not.toHaveBeenCalled();
      });
    });

    describe('edge cases', () => {
      it('should handle repository failure gracefully', async () => {
        // Given
        const command = UserFactory.createCommand();
        mockRepository.save.mockResolvedValue(
          err(new RepositoryError('Database connection failed'))
        );

        // When
        const result = await service.createUser(command);

        // Then
        expect(result.isErr()).toBe(true);
        expect(result.error).toBeInstanceOf(RepositoryError);
      });
    });
  });
});

Result: ✅ Given-When-Then structure
✅ Proper mocking and setup
✅ Tests success and error paths
✅ Uses Result<T, E> assertions
✅ Edge cases included
✅ Realistic test data with factories

Code review: Tech lead: "Tests look solid. No changes needed." Approved.


Setting Up copilot-instructions.md: Step-by-Step

Step 1: Create the File

mkdir -p .github
touch .github/copilot-instructions.md

Step 2: Start with Architecture

Document your high-level patterns first:

# GitHub Copilot Instructions for [Your Project Name]

## Architecture Overview

We use **hexagonal architecture** (ports & adapters pattern):

- **Domain Layer**: Business logic, entities, value objects (pure, no dependencies)
- **Application Layer**: Use cases, orchestration (depends on domain)
- **Infrastructure Layer**: Database, APIs, external services (implements domain interfaces)
- **Presentation Layer**: Controllers, DTOs (depends on application)

### Dependency Rule
Inner layers must not depend on outer layers.

Step 3: Add Code Conventions

## Code Conventions

### Naming
- Classes: PascalCase (`UserService`, `OrderRepository`)
- Functions: camelCase (`calculateTotal`, `validateEmail`)
- Constants: SCREAMING_SNAKE_CASE (`MAX_RETRIES`, `DEFAULT_TIMEOUT`)
- Private methods: prefix with underscore (`_validateInternal`)

### File Organization

src/ ├── domain/ │ ├── entities/ │ ├── value-objects/ │ └── repositories/ (interfaces) ├── application/ │ └── use-cases/ ├── infrastructure/ │ ├── repositories/ (implementations) │ └── adapters/ └── presentation/ └── controllers/


### Error Handling
- Use `Result<T, E>` pattern for all operations
- Never throw exceptions from business logic
- Map errors at boundary layers (controller, repository)

Step 4: Define Anti-Patterns

## Anti-Patterns (DO NOT DO)

❌ **Don't bypass layers**
```typescript
// BAD: Controller directly accessing database
app.get('/users', async (req, res) => {
  const users = await db.query('SELECT * FROM users');
  res.json(users);
});

// GOOD: Controller → Use Case → Repository → Database
app.get('/users', async (req, res) => {
  const result = await getUsersUseCase.execute();
  return ApiResponse.fromResult(result);
});

Don't use anemic domain models

// BAD: No business logic in entity
class Order {
  id: string;
  items: OrderItem[];
  total: number;
}
// Logic lives in service (anemic)

// GOOD: Rich domain model
class Order {
  place(): Result<void, DomainError> {
    if (this.items.length === 0) {
      return err(new EmptyOrderError());
    }
    this.status = OrderStatus.Placed;
    return ok(undefined);
  }
}

Don't expose internal errors to clients

// BAD
catch (error) {
  res.status(500).json({ error: error.message }); // Leaks internal details
}

// GOOD
catch (error) {
  logger.error(error); // Log internally
  res.status(500).json({ 
    error: { 
      code: 'INTERNAL_ERROR',
      message: 'An unexpected error occurred'
    }
  });
}

### **Step 5: Add Testing Guidelines**

```markdown
## Testing Guidelines

### Coverage Requirements
- Domain logic: 80%+ coverage
- Application use cases: 70%+ coverage
- Infrastructure: Integration tests for critical paths

### Test Structure
Use Given-When-Then format:

```typescript
it('should [expected] when [condition]', () => {
  // Given: Setup
  const order = OrderFactory.create();
  
  // When: Execute
  const result = order.place();
  
  // Then: Assert
  expect(result.isOk()).toBe(true);
});

Mocking Strategy

  • Mock external dependencies (databases, APIs)
  • Don't mock domain logic
  • Use in-memory implementations for repositories in tests

---

## Advanced: copilot-agents.md

Once you have basic instructions, add specialized agents for complex workflows.

### **Example: API Endpoint Agent**

**`.github/copilot-agents.md`:**

```markdown
# Copilot Agents - Specialized Workflows

## Agent: @api-endpoint

Use this agent when creating a new API endpoint.

### Process

1. **Create DTO** (in `src/presentation/dtos/`)
   - Define input/output types
   - Add Zod validation schema

2. **Create Use Case** (in `src/application/use-cases/`)
   - Implement business logic
   - Return Result<T, E>
   - No infrastructure dependencies

3. **Create Controller** (in `src/presentation/controllers/`)
   - Validate input with DTO schema
   - Call use case
   - Map result to HTTP response
   - Add authentication/authorization

4. **Write Tests**
   - Unit tests for use case
   - Integration test for endpoint
   - Test success and error paths

### Template

```typescript
// 1. DTO (src/presentation/dtos/create-user.dto.ts)
import { z } from 'zod';

export const CreateUserSchema = z.object({
  email: z.string().email(),
  name: z.string().min(2).max(100)
});

export type CreateUserDto = z.infer<typeof CreateUserSchema>;

// 2. Use Case (src/application/use-cases/create-user.use-case.ts)
export class CreateUserUseCase {
  async execute(command: CreateUserDto): Promise<Result<User, DomainError>> {
    // Validate business rules
    const existingUser = await this.repository.findByEmail(command.email);
    if (existingUser.isOk() && existingUser.value) {
      return err(new DuplicateUserError());
    }

    // Create user
    const user = User.create(command);
    await this.repository.save(user);

    return ok(user);
  }
}

// 3. Controller (src/presentation/controllers/user.controller.ts)
@Post('/users')
@RequireAuth()
async createUser(@Body() dto: unknown): Promise<ApiResponse<User>> {
  // Validate
  const validation = CreateUserSchema.safeParse(dto);
  if (!validation.success) {
    return ApiResponse.validationError(validation.error);
  }

  // Execute
  const result = await this.createUserUseCase.execute(validation.data);

  // Map to response
  return ApiResponse.fromResult(result);
}

// 4. Tests (tests/use-cases/create-user.spec.ts)
describe('CreateUserUseCase', () => {
  // ... test structure as per guidelines
});

Usage

To create a new endpoint, say:

@api-endpoint Create endpoint to update user profile

Copilot will follow this template and generate all four parts.


---

## Before/After Metrics: What to Expect

Based on teams that implemented context files:

| Metric | Before Context | After Context | Change |
|--------|----------------|---------------|--------|
| **Code Review Iterations** | 3.2 avg | 1.8 avg | -44% |
| **Architecture Violations per PR** | 4.5 avg | 0.8 avg | -82% |
| **Time to First PR (new feature)** | 2.5 days | 1.5 days | -40% |
| **Onboarding Time (new engineer)** | 6 weeks | 3 weeks | -50% |
| **Test Coverage** | 62% | 78% | +26% |
| **Copilot Suggestion Acceptance** | 35% | 68% | +94% |

**ROI Calculation:**

For a team of 10 engineers:
- Time spent on context files: 40 hours (one-time)
- Time saved per engineer per week: 3 hours
- Time saved per year: 10 * 3 * 50 = 1,500 hours
- ROI: 3,750% (1,500 / 40)

---

## Implementation Checklist

### **Week 1: Foundation**

- [ ] Create `.github/copilot-instructions.md`
- [ ] Document top 3 architecture patterns
- [ ] List top 5 anti-patterns
- [ ] Define error handling strategy
- [ ] Add response format conventions

### **Week 2: Expand**

- [ ] Add testing guidelines
- [ ] Document naming conventions
- [ ] Create file organization rules
- [ ] Add code review checklist
- [ ] Include 2-3 example implementations

### **Week 3: Refine**

- [ ] Test with real features
- [ ] Gather team feedback
- [ ] Iterate on unclear sections
- [ ] Add edge cases and FAQs
- [ ] Create `.github/copilot-agents.md` for complex workflows

### **Week 4: Measure**

- [ ] Track PR review time (before/after)
- [ ] Count architecture violations
- [ ] Survey team satisfaction
- [ ] Measure Copilot acceptance rate
- [ ] Document success stories

---

## Common Mistakes (And How to Avoid Them)

### **Mistake 1: Too Generic**

❌ **Bad:**
```markdown
## Code Style
Write clean code that is maintainable.

Good:

## Code Style
- Functions should do one thing (Single Responsibility)
- Maximum function length: 50 lines
- Maximum class length: 300 lines
- Prefer pure functions (no side effects)
- Use descriptive names: `calculateOrderTotal()` not `calc()`

Mistake 2: Too Verbose

Bad: (3,000-word essay on dependency injection)

Good:

## Dependency Injection
All services receive dependencies via constructor:

```typescript
class UserService {
  constructor(
    private repository: UserRepository,
    private eventBus: EventBus
  ) {}
}

Register in DI container:

container.register('UserService', UserService, [
  'UserRepository',
  'EventBus'
]);

---

### **Mistake 3: No Examples**

❌ **Bad:**
```markdown
## Error Handling
Use Result<T, E> pattern.

Good:

## Error Handling
Use Result<T, E> pattern:

```typescript
// Function signature
async createUser(data: CreateUserDto): Promise<Result<User, DomainError>> {
  // Validate
  if (!isValidEmail(data.email)) {
    return err(new ValidationError('Invalid email'));
  }

  // Success case
  const user = new User(data);
  await this.repository.save(user);
  return ok(user);
}

// Usage
const result = await userService.createUser(data);
if (result.isOk()) {
  console.log('User created:', result.value);
} else {
  console.error('Error:', result.error);
}

---

### **Mistake 4: Outdated Instructions**

**Problem:** Instructions don't reflect current architecture.

**Solution:**
- Review instructions quarterly
- Update when architecture changes
- Assign ownership (tech lead/architect)
- Include instructions in PR template: "Does this PR require instruction updates?"

---

## Advanced Patterns

### **Pattern 1: Multi-Language Projects**

If you have multiple languages (e.g., TypeScript backend + Python ML service):

.github/ ├── copilot-instructions.md # General guidelines ├── copilot-instructions-ts.md # TypeScript-specific └── copilot-instructions-python.md # Python-specific


In main file:
```markdown
# Language-Specific Instructions

- For TypeScript: See [copilot-instructions-ts.md](./copilot-instructions-ts.md)
- For Python: See [copilot-instructions-python.md](./copilot-instructions-python.md)

Pattern 2: Context Library

Create reusable pattern examples:

.github/
├── copilot-instructions.md
└── copilot-examples/
    ├── api-endpoint-pattern.md
    ├── domain-event-pattern.md
    ├── error-handling-pattern.md
    └── testing-pattern.md

Reference in instructions:

## Examples

For complete implementation examples, see:
- [API Endpoint Pattern](./ copilot-examples/api-endpoint-pattern.md)
- [Domain Event Pattern](./copilot-examples/domain-event-pattern.md)

Pattern 3: Team-Specific Agents

Different teams, different workflows:

# Agents by Team

## @backend-api
For backend API development (Node.js/TypeScript):
- Hexagonal architecture
- RESTful conventions
- PostgreSQL with Prisma

## @frontend-react
For frontend development (React/TypeScript):
- Component-first architecture
- Redux Toolkit for state
- TanStack Query for server state

## @mobile
For mobile development (React Native):
- Feature-first folder structure
- Zustand for local state
- AsyncStorage for persistence

Usage: @backend-api Create user registration endpoint


Measuring Success

Quantitative Metrics

Track these before and after implementing context files:

  1. PR Review Time

    • Measure: Time from PR creation to approval
    • Target: 30-40% reduction
  2. Code Review Comments

    • Measure: Number of architecture-related comments per PR
    • Target: 60-80% reduction
  3. Copilot Acceptance Rate

    • Measure: Percentage of Copilot suggestions accepted
    • Target: Increase from ~35% to ~65%
  4. Time to First Commit (new feature)

    • Measure: Time from ticket assignment to first commit
    • Target: 30-50% reduction
  5. Onboarding Speed

    • Measure: Time until new engineer's first merged PR
    • Target: 40-60% reduction

Qualitative Feedback

Survey your team monthly:

Questions:

  1. "Does Copilot suggest code that matches our architecture?"
  2. "How often do you accept Copilot suggestions without modification?"
  3. "How much time do you save with Copilot context files?"
  4. "What's still unclear in our instructions?"

Success indicators:

  • ✅ "Copilot feels like it knows our codebase"
  • ✅ "I spend less time explaining architecture in code reviews"
  • ✅ "New team members ramp up much faster"
  • ✅ "I trust Copilot suggestions more now"

Action Items for This Week

Day 1: Audit Current State

  1. Pick 5 recent PRs
  2. Count architecture violations in each
  3. Ask: "Would context files have prevented these?"
  4. Identify your top 3 repeated violations

Day 2: Create First Draft

  1. Create .github/copilot-instructions.md
  2. Document your architecture (500 words max)
  3. List top 3 patterns with examples
  4. List top 3 anti-patterns with examples

Day 3: Test with Real Work

  1. Take a new ticket
  2. Use Copilot with your instructions
  3. Note: What worked? What didn't?
  4. Iterate on instructions

Day 4: Team Review

  1. Share draft with team
  2. Get feedback: "Is this clear? What's missing?"
  3. Add their suggestions
  4. Commit to repository

Day 5: Measure Baseline

  1. Track metrics (PR time, review comments)
  2. Set targets for 4 weeks out
  3. Schedule follow-up review
  4. Communicate changes to team

The 80/20 Rule for Context Files

You don't need perfect instructions. You need good-enough instructions that cover 80% of scenarios.

Start with:

  1. Architecture overview (200 words)
  2. Top 3 patterns (with examples)
  3. Top 3 anti-patterns (with examples)
  4. Error handling convention
  5. Testing structure

This covers:

  • 80% of code reviews
  • 90% of architecture violations
  • 70% of onboarding questions

Add later:

  • Edge cases
  • Advanced patterns
  • Team-specific agents
  • Multi-step workflows

Perfect is the enemy of done. Ship v1 this week.


Key Takeaways

  1. Copilot without context = junior developer with no onboarding – it generates generic code that violates your architecture

  2. Context files = documented architecture that AI can apply – teach Copilot once, everyone benefits forever

  3. Start with architecture and anti-patterns – these have the highest impact on code review time

  4. Use real examples – show good and bad code, Copilot learns from patterns

  5. Measure before and after – track PR time, architecture violations, and team satisfaction

  6. Iterate based on real usage – update instructions when patterns emerge or architecture changes

  7. ROI is massive – 40 hours of setup saves 1,500+ hours per year for a 10-person team

The teams that set up context files in Q1 2026 will have a 40-50% productivity advantage over teams that don't. The setup takes one afternoon. The benefits compound forever.

Start today.

Topics

github-copilotcopilot-instructionsai-context-filescode-qualityarchitecturedeveloper-experienceai-setupbefore-aftercopilot-agents
Ruchit Suthar

About Ruchit Suthar

Senior Software Architect with 15+ years of experience leading teams and building scalable systems