The API-First AI Strategy: A Software Architect's Guide to Building with LLM APIs
Most teams treat LLM APIs like any other REST API and hit walls: cost explosions, brittleness, architectural mess. Learn 5 production-ready patterns: AI Gateway for abstraction, Prompt Management with versioning, Response Validation against hallucinations, Cost Control with budgets & rate limits, and Observability for metrics. Includes decision frameworks (sync vs async, model selection, architecture fit), failure handling strategies, testing approaches, and real trade-off analysis.

TL;DR
Building production AI systems requires more than just calling LLM APIs—you need an abstraction layer, retry logic, cost controls, and caching strategies. This guide covers the architecture patterns that prevent cost explosions, reliability issues, and vendor lock-in when integrating AI into enterprise systems.
The API-First AI Strategy: A Software Architect's Guide to Building with LLM APIs
Your CTO asks: "Can we use AI to automate our support tickets?"
You investigate. OpenAI API looks promising. You write a quick prototype. It works. You show the demo. Everyone's excited. Then you start thinking about production:
- How do we handle rate limits at scale?
- What happens when the API is down?
- How do we control costs when traffic spikes?
- Where does this fit in our architecture?
- How do we test AI-powered features?
- What about data privacy and compliance?
This is where most teams stall. They treat LLM APIs like any other REST API and run into walls—unpredictable costs, brittleness, and architectural mess.
This guide is for architects and tech leads who need to integrate AI into production systems without creating technical debt. We'll cover architecture patterns, failure modes, cost control, and the trade-offs that matter.
The Problem with "Just Call the API"
Most teams approach LLM integration like this:
// Support ticket handler
async function respondToTicket(ticket: Ticket): Promise<string> {
const response = await openai.chat.completions.create({
model: "gpt-4",
messages: [{ role: "user", content: ticket.content }]
});
return response.choices[0].message.content;
}
This works in demos. It fails in production.
Problems:
Cost explosion
- GPT-4 costs $0.03 per 1K input tokens, $0.06 per 1K output tokens
- One ticket averages 500 input + 800 output tokens
- 10,000 tickets/day = $720/day = $21,600/month
- Spikes during incidents can cost thousands in hours
Reliability issues
- No retry logic → failures bubble up
- No fallback → system unusable during API outages
- No rate limiting → getting throttled, requests fail
Quality problems
- No validation → hallucinations reach customers
- No context → generic responses
- No consistency → different answers for same question
Architecture debt
- AI logic scattered across codebase
- No testing strategy
- No observability (costs, latency, failure rate)
- Tight coupling to vendor
The fix: Treat AI as a strategic architectural component, not just "another API call."
The Architecture Patterns You Need
Pattern 1: AI Gateway (Abstraction Layer)
Problem: Direct coupling to OpenAI, Anthropic, or other providers.
Solution: Create an abstraction that isolates AI vendors.
// Domain interface (vendor-agnostic)
interface AIProvider {
complete(prompt: CompletionRequest): Promise<CompletionResponse>;
embed(text: string): Promise<number[]>;
moderate(content: string): Promise<ModerationResult>;
}
// Concrete implementations
class OpenAIProvider implements AIProvider {
async complete(request: CompletionRequest): Promise<CompletionResponse> {
// OpenAI-specific logic
const response = await this.client.chat.completions.create({
model: request.model || 'gpt-4',
messages: this.formatMessages(request.messages),
temperature: request.temperature,
max_tokens: request.maxTokens
});
return this.mapResponse(response);
}
}
class AnthropicProvider implements AIProvider {
async complete(request: CompletionRequest): Promise<CompletionResponse> {
// Anthropic-specific logic
// Different API, same interface
}
}
// Usage in application layer
class TicketResponseUseCase {
constructor(private aiProvider: AIProvider) {}
async execute(ticket: Ticket): Promise<Result<string, DomainError>> {
const response = await this.aiProvider.complete({
messages: [
{ role: 'system', content: this.getSystemPrompt() },
{ role: 'user', content: ticket.content }
],
temperature: 0.7,
maxTokens: 500
});
return ok(response.content);
}
}
Benefits:
- ✅ Switch providers without changing business logic
- ✅ A/B test multiple providers
- ✅ Fallback to cheaper models during cost spikes
- ✅ Mock for testing
Pattern 2: Prompt Management (Version Control for Prompts)
Problem: Prompts hardcoded in application code. Changes require deployments. No versioning or A/B testing.
Solution: Treat prompts as configuration, not code.
Database Schema:
CREATE TABLE prompts (
id UUID PRIMARY KEY,
key VARCHAR(255) UNIQUE NOT NULL,
version INTEGER NOT NULL,
content TEXT NOT NULL,
variables JSONB,
model VARCHAR(50),
temperature FLOAT,
max_tokens INTEGER,
active BOOLEAN DEFAULT false,
created_at TIMESTAMP,
created_by VARCHAR(255),
metadata JSONB
);
CREATE TABLE prompt_metrics (
id UUID PRIMARY KEY,
prompt_id UUID REFERENCES prompts(id),
timestamp TIMESTAMP,
tokens_used INTEGER,
latency_ms INTEGER,
cost_usd DECIMAL(10, 6),
user_rating INTEGER,
hallucination_detected BOOLEAN
);
Usage:
class PromptManager {
async getPrompt(key: string, variables: Record<string, any>): Promise<PromptConfig> {
// Get active version from database
const prompt = await this.repository.findActiveByKey(key);
// Interpolate variables
const content = this.interpolate(prompt.content, variables);
// Track usage
await this.metrics.record({
promptId: prompt.id,
version: prompt.version,
timestamp: new Date()
});
return {
content,
model: prompt.model,
temperature: prompt.temperature,
maxTokens: prompt.maxTokens
};
}
private interpolate(template: string, vars: Record<string, any>): string {
return template.replace(/\{\{(\w+)\}\}/g, (_, key) => vars[key] || '');
}
}
// Application code
const promptConfig = await promptManager.getPrompt('support-ticket-response', {
ticketCategory: ticket.category,
customerTier: ticket.customer.tier,
previousResponses: ticket.history.length
});
const response = await aiProvider.complete({
messages: [
{ role: 'system', content: promptConfig.content },
{ role: 'user', content: ticket.content }
],
model: promptConfig.model,
temperature: promptConfig.temperature
});
Benefits:
- ✅ Update prompts without deployment
- ✅ A/B test prompt variations
- ✅ Version control and rollback
- ✅ Track which prompts perform best
- ✅ Non-engineers can iterate on prompts
Pattern 3: Response Validation (Guard Against Hallucinations)
Problem: LLMs hallucinate. You can't send unvalidated responses to customers.
Solution: Multi-layer validation pipeline.
interface ValidationRule {
validate(response: string, context: any): ValidationResult;
}
class ResponseValidator {
constructor(private rules: ValidationRule[]) {}
async validate(
response: string,
context: ValidationContext
): Promise<ValidationResult> {
for (const rule of this.rules) {
const result = await rule.validate(response, context);
if (!result.isValid) {
return result;
}
}
return { isValid: true };
}
}
// Validation rules
class NoHallucinatedFactsRule implements ValidationRule {
async validate(response: string, context: any): Promise<ValidationResult> {
// Check if response mentions facts not in source material
const facts = this.extractFacts(response);
const sourceFacts = this.extractFacts(context.source);
const hallucinated = facts.filter(f => !sourceFacts.includes(f));
if (hallucinated.length > 0) {
return {
isValid: false,
reason: 'Response contains facts not in source',
details: hallucinated
};
}
return { isValid: true };
}
}
class NoInappropriateContentRule implements ValidationRule {
async validate(response: string): Promise<ValidationResult> {
// Use OpenAI moderation API
const moderation = await this.aiProvider.moderate(response);
if (moderation.flagged) {
return {
isValid: false,
reason: 'Content flagged by moderation API',
details: moderation.categories
};
}
return { isValid: true };
}
}
class CorrectSchemaRule implements ValidationRule {
async validate(response: string, context: any): Promise<ValidationResult> {
try {
const parsed = JSON.parse(response);
const validation = context.schema.safeParse(parsed);
if (!validation.success) {
return {
isValid: false,
reason: 'Response does not match expected schema',
details: validation.error
};
}
return { isValid: true };
} catch (error) {
return {
isValid: false,
reason: 'Response is not valid JSON'
};
}
}
}
// Usage
const validator = new ResponseValidator([
new NoHallucinatedFactsRule(),
new NoInappropriateContentRule(),
new CorrectSchemaRule()
]);
const validationResult = await validator.validate(aiResponse, {
source: ticket.context,
schema: ResponseSchema
});
if (!validationResult.isValid) {
// Retry with different prompt or fallback to human
await this.handleValidationFailure(validationResult);
}
Benefits:
- ✅ Catch hallucinations before they reach customers
- ✅ Enforce response structure
- ✅ Maintain brand safety
- ✅ Reduce liability risk
Pattern 4: Cost Control (Rate Limiting & Budgets)
Problem: AI costs are unpredictable and can spike uncontrollably.
Solution: Implement cost controls at multiple levels.
class CostController {
constructor(
private budgetManager: BudgetManager,
private rateLimiter: RateLimiter,
private costPredictor: CostPredictor
) {}
async checkAndReserve(
request: AIRequest,
context: CostContext
): Promise<Result<CostReservation, CostError>> {
// 1. Predict cost
const estimatedCost = this.costPredictor.estimate(request);
// 2. Check rate limits (requests per minute/hour)
const rateLimitResult = await this.rateLimiter.checkLimit(
context.userId,
context.feature
);
if (!rateLimitResult.allowed) {
return err(new RateLimitExceededError());
}
// 3. Check budget (daily/monthly caps)
const budgetResult = await this.budgetManager.checkBudget(
context.feature,
estimatedCost
);
if (!budgetResult.available) {
return err(new BudgetExceededError());
}
// 4. Reserve budget
const reservation = await this.budgetManager.reserve(
context.feature,
estimatedCost
);
return ok(reservation);
}
async recordActual(
reservation: CostReservation,
actualCost: number
): Promise<void> {
// Adjust budget based on actual cost
const diff = actualCost - reservation.estimatedCost;
await this.budgetManager.adjust(reservation.id, diff);
// Record metrics
await this.metrics.record({
feature: reservation.feature,
estimatedCost: reservation.estimatedCost,
actualCost,
accuracy: 1 - Math.abs(diff) / reservation.estimatedCost
});
}
}
// Budget configuration
interface BudgetConfig {
feature: string;
dailyLimit: number; // USD
monthlyLimit: number; // USD
alertThreshold: number; // 0.8 = 80%
fallbackStrategy: 'queue' | 'cheaper-model' | 'reject';
}
// Usage
const costResult = await costController.checkAndReserve(request, {
userId: ticket.userId,
feature: 'support-ticket-response'
});
if (costResult.isErr()) {
// Budget exceeded, fallback strategy
if (config.fallbackStrategy === 'cheaper-model') {
request.model = 'gpt-3.5-turbo'; // Cheaper alternative
} else if (config.fallbackStrategy === 'queue') {
await this.queue.add(request); // Process later
return ok('Request queued due to budget limits');
}
}
const response = await aiProvider.complete(request);
// Record actual cost
await costController.recordActual(
costResult.value,
response.usage.totalCost
);
Cost Optimization Strategies:
Tiered Models
- Use GPT-4 for complex/high-value requests
- Use GPT-3.5 for simple/bulk requests
- Use local models for classification tasks
Caching
- Cache responses for identical requests
- Use semantic caching (similar requests)
- Cache expensive embeddings
Prompt Optimization
- Shorter prompts = lower costs
- Remove unnecessary context
- Use prompt compression techniques
Batch Processing
- Batch similar requests together
- Process during off-peak hours
- Use cheaper models for batch jobs
Pattern 5: Observability (Know What's Happening)
Problem: You can't improve what you can't measure.
Solution: Instrument everything.
class AIObservability {
async recordRequest(event: AIRequestEvent): Promise<void> {
await this.metrics.record({
// Performance metrics
latency: event.latency,
tokenCount: event.usage.totalTokens,
// Cost metrics
costUSD: event.usage.totalCost,
// Quality metrics
validationPassed: event.validation.passed,
validationFailureReason: event.validation.failureReason,
// User feedback (if available)
userRating: event.feedback?.rating,
userReported: event.feedback?.reported,
// Context
model: event.request.model,
promptVersion: event.promptVersion,
feature: event.feature,
timestamp: event.timestamp
});
}
// Dashboards
async getCostBreakdown(timeRange: TimeRange): Promise<CostBreakdown> {
return {
byFeature: await this.metrics.groupBy('feature', 'costUSD', timeRange),
byModel: await this.metrics.groupBy('model', 'costUSD', timeRange),
byPromptVersion: await this.metrics.groupBy('promptVersion', 'costUSD', timeRange),
total: await this.metrics.sum('costUSD', timeRange)
};
}
async getQualityMetrics(timeRange: TimeRange): Promise<QualityMetrics> {
return {
validationPassRate: await this.metrics.rate('validationPassed', timeRange),
averageUserRating: await this.metrics.avg('userRating', timeRange),
hallucinationRate: await this.metrics.rate('hallucination', timeRange),
reportRate: await this.metrics.rate('userReported', timeRange)
};
}
async getPerformanceMetrics(timeRange: TimeRange): Promise<PerformanceMetrics> {
return {
p50Latency: await this.metrics.percentile('latency', 0.50, timeRange),
p95Latency: await this.metrics.percentile('latency', 0.95, timeRange),
p99Latency: await this.metrics.percentile('latency', 0.99, timeRange),
avgTokensPerRequest: await this.metrics.avg('tokenCount', timeRange)
};
}
}
// Alert rules
class AIAlertManager {
rules: AlertRule[] = [
{
name: 'High cost spike',
condition: (metrics) => metrics.hourlySpend > metrics.avgHourlySpend * 2,
action: async () => {
await this.notify('Cost spike detected, switching to cheaper models');
await this.configManager.update({ defaultModel: 'gpt-3.5-turbo' });
}
},
{
name: 'High validation failure rate',
condition: (metrics) => metrics.validationFailureRate > 0.15,
action: async () => {
await this.notify('High validation failure rate, check prompt quality');
await this.disablePrompt(metrics.promptVersion);
}
},
{
name: 'High latency',
condition: (metrics) => metrics.p95Latency > 5000,
action: async () => {
await this.notify('High latency detected');
await this.scaleUp('ai-service');
}
}
];
}
Key Metrics to Track:
| Category | Metric | Why It Matters |
|---|---|---|
| Cost | Daily/monthly spend | Budget management |
| Cost per feature | ROI analysis | |
| Cost per user | Unit economics | |
| Quality | Validation pass rate | Hallucination detection |
| User satisfaction rating | Actual usefulness | |
| Report rate | Safety issues | |
| Performance | P95 latency | User experience |
| Success rate | Reliability | |
| Token efficiency | Cost optimization | |
| Usage | Requests per feature | Feature popularity |
| Active users | Adoption rate | |
| Retry rate | API reliability |
Architecture Decision Framework
When integrating AI into your system, answer these questions:
1. Synchronous vs. Asynchronous?
Synchronous (User waits for response):
- ✅ Best for: Chat interfaces, real-time suggestions
- ❌ Risks: High latency (2-10s), timeout issues
- 💡 Mitigation: Use streaming responses, show progress
Asynchronous (Background processing):
- ✅ Best for: Document analysis, batch operations
- ❌ Risks: Complexity, state management
- 💡 Mitigation: Use job queues, WebSocket for updates
Decision Matrix:
| Use Case | Sync/Async | Why |
|---|---|---|
| Chatbot | Sync (streaming) | User expects immediate response |
| Support ticket classification | Async | Not time-critical, can batch |
| Code review comments | Async | Large context, slow LLM |
| Auto-complete | Sync | Must be fast (< 500ms) |
| Document summarization | Async | Can take minutes, show progress |
2. Which Model(s) to Use?
Model Selection Matrix:
| Task Complexity | Speed Requirement | Cost Sensitivity | Recommended Model |
|---|---|---|---|
| High | Low | Low | GPT-4 / Claude Opus |
| High | High | Medium | GPT-4-Turbo |
| Medium | Medium | Medium | GPT-3.5 / Claude Sonnet |
| Low | High | High | GPT-3.5 / Llama 2 |
| Classification | Very High | Very High | Fine-tuned small model |
Multi-Model Strategy:
class ModelSelector {
selectModel(request: AIRequest): string {
// High-value users get best model
if (request.user.tier === 'enterprise') {
return 'gpt-4';
}
// Complex tasks need powerful models
if (request.complexity === 'high') {
return 'gpt-4-turbo';
}
// Simple tasks use cheaper models
if (request.complexity === 'low') {
return 'gpt-3.5-turbo';
}
// Default
return 'gpt-3.5-turbo';
}
}
3. Where Does AI Fit in Your Architecture?
Option A: Direct Integration (Simple)
Controller → AI Provider → Response
✅ Pros: Simple, fast to implement
❌ Cons: Tight coupling, hard to test, no observability
Use when: Prototyping, low-volume features
Option B: Service Layer (Recommended)
Controller → Use Case → AI Service → AI Provider → Response
↓
Validation
↓
Caching
↓
Observability
✅ Pros: Testable, observable, reusable
❌ Cons: More code, slightly more complex
Use when: Production systems, multiple features using AI
Option C: Event-Driven (Complex)
Event Bus → AI Worker → Process → Store → Notify User
✅ Pros: Scalable, decoupled, resilient
❌ Cons: Complex, eventual consistency
Use when: High volume, long-running tasks, need to scale
4. How to Handle Failures?
Failure Modes:
API Timeout (LLM took too long)
- Mitigation: Set reasonable timeouts (30s), retry with backoff
API Rate Limit (Too many requests)
- Mitigation: Implement client-side rate limiting, queue requests
API Error (500, 503)
- Mitigation: Retry with exponential backoff, circuit breaker
Validation Failure (Hallucination detected)
- Mitigation: Retry with different prompt, escalate to human
Cost Limit Reached
- Mitigation: Queue request, use cheaper model, reject gracefully
Resilience Pattern:
class ResilientAIService {
async complete(
request: AIRequest,
options: ResilienceOptions = {}
): Promise<Result<AIResponse, AIError>> {
const {
maxRetries = 3,
retryDelay = 1000,
timeout = 30000,
fallbackModel = 'gpt-3.5-turbo'
} = options;
let lastError: AIError | null = null;
for (let attempt = 1; attempt <= maxRetries; attempt++) {
try {
// Check circuit breaker
if (!this.circuitBreaker.isAvailable(request.provider)) {
return err(new ServiceUnavailableError());
}
// Execute with timeout
const response = await this.executeWithTimeout(request, timeout);
// Validate response
const validation = await this.validator.validate(response);
if (!validation.isValid) {
lastError = new ValidationError(validation.reason);
continue; // Retry
}
// Success
this.circuitBreaker.recordSuccess(request.provider);
return ok(response);
} catch (error) {
lastError = this.mapError(error);
// Record failure for circuit breaker
this.circuitBreaker.recordFailure(request.provider);
// Rate limit or unrecoverable error → don't retry
if (error instanceof RateLimitError || error instanceof AuthError) {
return err(lastError);
}
// Retry with backoff
if (attempt < maxRetries) {
await this.sleep(retryDelay * Math.pow(2, attempt - 1));
}
}
}
// All retries failed, try fallback model
if (fallbackModel && request.model !== fallbackModel) {
return this.complete({ ...request, model: fallbackModel }, {
...options,
fallbackModel: undefined // Prevent infinite fallback
});
}
return err(lastError || new UnknownError());
}
}
Testing Strategy for AI Features
Challenge: LLMs are non-deterministic. Same input can produce different outputs.
Level 1: Unit Tests (Mock AI)
describe('SupportTicketResponder', () => {
it('should format response correctly when AI returns valid data', async () => {
// Given
const mockAI = {
complete: jest.fn().mockResolvedValue({
content: 'Thank you for your question...',
usage: { totalTokens: 150 }
})
};
const responder = new SupportTicketResponder(mockAI);
// When
const result = await responder.respond(ticket);
// Then
expect(result.isOk()).toBe(true);
expect(result.value).toContain('Thank you');
expect(mockAI.complete).toHaveBeenCalledWith(
expect.objectContaining({
messages: expect.arrayContaining([
expect.objectContaining({ role: 'system' })
])
})
);
});
});
Level 2: Integration Tests (Real AI, Assertions on Structure)
describe('SupportTicketResponder (integration)', () => {
it('should generate response with correct structure', async () => {
// Given
const realAI = new OpenAIProvider(config);
const responder = new SupportTicketResponder(realAI);
const ticket = createTestTicket({
content: 'How do I reset my password?'
});
// When
const result = await responder.respond(ticket);
// Then
expect(result.isOk()).toBe(true);
const response = result.value;
// Assert structure, not exact content
expect(response).toHaveProperty('content');
expect(response.content.length).toBeGreaterThan(50);
expect(response.content).not.toContain('ERROR');
expect(response.content).not.toContain('As an AI');
// Assert mentions key terms
expect(response.content.toLowerCase()).toContain('password');
expect(response.content.toLowerCase()).toMatch(/reset|change|update/);
});
});
Level 3: Evaluation Tests (LLM as Judge)
describe('SupportTicketResponder (evaluation)', () => {
it('should generate helpful and accurate responses', async () => {
// Given
const testCases = [
{
ticket: 'How do I reset my password?',
expectedTopics: ['password', 'reset', 'account'],
expectedTone: 'helpful'
},
// ... more test cases
];
for (const testCase of testCases) {
// When
const response = await responder.respond(testCase.ticket);
// Then - Use LLM as judge
const evaluation = await evaluator.evaluate({
response: response.value.content,
criteria: {
relevance: 'Does the response address the user question?',
accuracy: 'Is the information factually correct?',
helpfulness: 'Would this help the user solve their problem?',
tone: `Is the tone ${testCase.expectedTone}?`
},
context: {
question: testCase.ticket,
expectedTopics: testCase.expectedTopics
}
});
expect(evaluation.relevance.score).toBeGreaterThan(0.8);
expect(evaluation.accuracy.score).toBeGreaterThan(0.8);
expect(evaluation.helpfulness.score).toBeGreaterThan(0.7);
}
});
});
Level 4: Regression Tests (Golden Set)
Maintain a set of "golden" examples:
// golden-responses.json
[
{
"id": "password-reset-001",
"input": "How do I reset my password?",
"expectedResponse": "To reset your password, click...",
"minSimilarity": 0.85
}
]
// Test runner
describe('Regression tests', () => {
goldenExamples.forEach(example => {
it(`should generate response similar to golden for: ${example.id}`, async () => {
// When
const response = await responder.respond(example.input);
// Then - Compare semantic similarity
const similarity = await semanticSimilarity(
response.value.content,
example.expectedResponse
);
expect(similarity).toBeGreaterThan(example.minSimilarity);
});
});
});
Production Checklist
Before going live with AI features:
Cost Controls
- Daily/monthly budget limits configured
- Rate limiting implemented (per user, per feature)
- Cost estimation and alerting in place
- Fallback to cheaper models configured
- Cost dashboard built
Quality Gates
- Response validation pipeline implemented
- Moderation API integrated (if user-facing)
- Hallucination detection rules defined
- Human review process for edge cases
- User feedback collection mechanism
Reliability
- Retry logic with exponential backoff
- Circuit breaker implemented
- Timeout configuration tuned
- Fallback strategies defined
- Health check endpoints created
Observability
- Metrics collection (cost, latency, quality)
- Dashboards for monitoring
- Alert rules configured
- Log aggregation set up
- Cost attribution by feature/user
Security & Compliance
- API keys stored securely (vault, not env vars)
- PII detection and scrubbing
- Data retention policy defined
- Audit logging implemented
- Privacy policy updated
Testing
- Unit tests with mocked AI
- Integration tests with real API
- Evaluation tests (LLM as judge)
- Regression tests (golden set)
- Load testing completed
Real-World Trade-Offs
Trade-Off 1: Latency vs. Cost
Scenario: Support ticket auto-response
Options:
| Approach | Latency | Cost | Quality |
|---|---|---|---|
| GPT-4 (full context) | 8-12s | $0.50 | Best |
| GPT-4-Turbo | 3-5s | $0.20 | Great |
| GPT-3.5 (full context) | 2-3s | $0.05 | Good |
| GPT-3.5 (summarized) | 1-2s | $0.02 | Okay |
| Fine-tuned small model | < 500ms | $0.002 | Good enough |
Decision: Use GPT-3.5 for first response, escalate to GPT-4 if user rates it poorly.
Trade-Off 2: Accuracy vs. Speed
Scenario: Code review comments
Options:
Single LLM call (fast, less accurate)
- One prompt with all context
- Returns all feedback at once
- Latency: 5-10s
- May miss subtle issues
Multi-step pipeline (slow, more accurate)
- Step 1: Identify potential issues (fast model)
- Step 2: Deep analysis of flagged issues (slow model)
- Step 3: Generate suggestions
- Latency: 20-30s
- Higher accuracy
Decision: Use single call for draft feedback, multi-step for final review.
Trade-Off 3: Flexibility vs. Control
Scenario: Content generation
Options:
- High temperature (0.9): Creative, varied, unpredictable
- Medium temperature (0.7): Balanced
- Low temperature (0.3): Consistent, safe, boring
Decision Matrix:
| Use Case | Temperature | Why |
|---|---|---|
| Support responses | 0.3 | Need consistency, accuracy |
| Marketing copy | 0.8 | Need creativity |
| Code generation | 0.2 | Need determinism |
| Brainstorming | 0.9 | Want variety |
Key Takeaways
Treat AI as a strategic component, not "just an API" – requires architecture patterns, observability, cost controls
Implement the 5 core patterns:
- AI Gateway (abstraction)
- Prompt Management (versioning)
- Response Validation (quality gates)
- Cost Control (budgets & rate limits)
- Observability (metrics & alerts)
Design for failure – APIs will be slow, rate-limited, or down; have fallback strategies
Control costs aggressively – AI costs can explode; implement budgets, use tiered models, optimize prompts
Test differently – LLMs are non-deterministic; test structure and semantic meaning, not exact matches
Make trade-offs explicit – latency vs. cost, accuracy vs. speed, flexibility vs. control
Build incrementally – start simple (synchronous, single model), add complexity as needed (async, multi-model, validation pipeline)
The teams that succeed with AI in 2026 are those who treat it as a first-class architectural component with proper abstraction, observability, and controls—not as "just another API call."
Your move.
